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1. Introduction

Ideas of holography underlaid the AdS/CFT correspondence [1] provide a promising per-

spective for the study of gauge theories via string theory and supergravity. In particular,

the extension of the holographic principle to a non-conformal case enables to capture the

strongly coupled dynamics of a gauge theory through the classical supergravity. This al-

lows, at least in principle, to calculate various correlation functions, extracting the masses

of glueballs, which is not possible by means of the standard field theory technique. In this

paper we focus on a particular case of the Klebanov-Strassler supergravity background [2]

and its extension to the baryonic branch [3 – 5], which is a gravity dual of the non-conformal

N = 1 gauge theory with two pairs of matter multiplets.

According to the AdS/CFT correspondence, gauge theory operators correspond to fluc-

tuations of the background supergravity fields. Thus the stress-energy tensor corresponds

to the fluctuation of the metric. The transverse traceless part of the former combines with

the transverse part of the U(1)R current Jµ5 and the transverse fermionic superconformal

current into a spin 2 massive supermultiplet [6]. The mass spectra of the corresponding

glueballs coincide, what is evident from the supersymmetric structure of the equations of

motion in the gravity dual theory.

In the gauge theory the supersymmetric structure of the spin 2 multiplet is transparent

through the on-shell equation of current conservation [6]. Using superfield notations, one

has

DαVαα̇ = D̄α̇S̄, (1.1)
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where Vαα̇ = σµαα̇Vµ is a real supercurrent that contains the T µν and the Jµ5 current,

V µ = Jµ5 − i

2
θσν θ̄ T µ

ν + i θ2 ∂µs̄− i θ̄2 ∂µs+
1

4
θ̄2θ2 (2Dµ + �Jµ5 ) + fermions. (1.2)

The supercurrent V µ contains two supermultiplets: the transverse spin-2 multiplet, which

consists of the traceless transverse components of T µν and the transverse part of Jµ5 , and

the chiral multiplet S containing the trace T µ
µ , the divergence ∂µJ

µ
5 and the γ-trace of the

superconformal current. It also contains the complex scalar field s as its lowest component.

The chiral multiplet S thus accounts for the anomalies of the scale, U(1)R and the super-

conformal symmetries, associated with the components of the supercurrent, while the equa-

tion (1.1) is the supersymmetric generalization of the anomalous divergence of the current.

On the gravity dual side, background fluctuations of supergravity fields that are dual to

the operators in (1.2) are massless in the five-dimensional sense if the theory is conformal.

If the conformal symmetry is broken, the dual of the U(1)R current satisfies the equation for

a massive vector particle in five dimensions. Note that the dual of the traceless transverse

part of the stress-energy tensor is described by a five-dimensional massless equations in

both cases. However the finite warp-factor at the tip of the conifold in the non-conformal

case leads to a finite four-dimensional spectrum of glueballs.

In this work we describe the holographic dual modes of the traceless part of (1.2),

namely the spin 2 gravity multiplet, in the context of the baryonic branch of the KS

background. The baryonic branch is a continuous family of the type IIB supergravity

solutions originating at the KS background. The branch is parameterized by the vevs of

the baryonic operators in the dual gauge theory [3, 7]. The backgrounds from the family

are constructed in terms of the Papadopoulos and Tseytlin [8] ansatz, which consists of

scalar functions parameterizing the metric and fluxes. Those scalar functions depend only

on the radial coordinate of the conifold t and satisfy a system of first order differential

equations, which was derived in [4]. No analytical solution to this system is known, except

for the KS case,1 and in practice the backgrounds from the baryonic branch have to be

constructed numerically. More details about the baryonic branch solutions can be found

in the works [4, 5].

The KS and baryonic branch backgrounds correspond to non-conformal gauge theories.

We derive the linearized equations for the vector fluctuation dual to the U(1) R-current and

the metric fluctuation dual to the stress-energy tensor. Then we numerically compute the

four-dimensional mass spectra of the corresponding glueballs along the branch. Since we

derive our equations on the solid ground of “microscopic” ten-dimensional theory, we can

test the applicability of the similar results obtained in [10] through an effective approach

of five-dimensional models of gauge/gravity correspondence.

This paper is organized as follows. In the section 2 we remind the reader the dual

description of the bosonic operators of the gravity and anomaly multiplets in the case of

the KS background. This part also contains a sketch of the holographic anomaly mechanism

suggested in [11].

1The analytical solution [9], known as Maldacena-Nunez background, also solves the system of [4].

However, it has different boundary conditions at infinity and therefore does not belong to the baryonic

branch.

– 2 –



J
H
E
P
0
5
(
2
0
0
8
)
0
3
5

Sections 3 and 4 are dedicated to a derivation of the linearized equations for the bosonic

fluctuations of fields dual to the gravity multiplet of (1.2). On the supergravity side the

bosonic sector of the multiplet consists of the symmetric traceless perturbation of the metric

— the graviton, and the transverse vector perturbation discussed in the section 2.

Since the bosonic fluctuations of the gravity multiplet are related by supersymmetry,

their spectra coincide. There is a Supersymmetric Quantum Mechanics (SQM) transforma-

tion relating the effective five-dimensional equations, which is a reminiscence of the original

supergravity transformation in ten dimensions. In section 4 we derive the equation for the

vector mode only for the case of the KS background, but the supersymmetric structure

of the equations allows us to extend it further to the baryonic branch. We show that

this equation is the same as discovered by [10] in the five-dimensional approach. This is

discussed in detail in section 5.

We present the results of a numerical calculation of the spectrum in the section 6.

Although the equations that describe the graviton and the vector particle yield the same

spectrum of bound states, they are essentially different. We perform two separate calcula-

tions of the spectrum of the gravity multiplet which is an important consistency check of

the numerical results. We conclude with a discussion in section 7.

2. Multiplets and anomalies in the dual theory

The purpose of this work is the study of the gravity multiplet, i.e. the fluctuations above

a classical supergravity background dual to a field theory supermultiplet consisting of the

traceless part of the stress-energy tensor T µν , spin 3/2 conformal supercurrent and the

conserved part of the U(1)R current Jµ5 . The gravity multiplet therefore contains the

traceless symmetric excitation of the metric — the graviton hµν , the spin 3/2 gravitino

and the transverse vector excitation Ãµ along the 1-form dψ which we specify below.

Classical supergravity backgrounds that we study in this work are the backgrounds from

the baryonic branch of the KS solution.

First we consider the transverse non-diagonal fluctuation of the background metric

gµν = ηµν + hµν , (2.1)

where hµν has only components in the Minkowskian directions. We find that in accor-

dance with the general results of [12, 13] this excitation is described by the massless scalar

minimally coupled to the metric in the Einstein frame for all backgrounds of the baryonic

branch.

Next we consider fluctuation that is dual to the conserved (transverse) part of the

U(1)R current in the KS background. Recall that the KS solution corresponds to a manifold

that is locally a product of the Minkowski space-time and the six dimensional deformed

conifold [2],

ds2KS = h−1/2(t)ηµνdx
µdxν + h1/2(t)ds26, (2.2)

where h(t) is the warp factor that depends on the radial coordinate t of the conifold, related

to the standard conical radial coordinate r via t ∼ 3 log r. U(1)R transformations act as
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rotations along the conifold base T 1,1,

ψ → ψ + ζ,

where ψ is one of the angles on the base.2

In the conformal case, the background is invariant under this symmetry, what results

in a massless gauge field Ãµ. The KS background, as well as the backgrounds along the

baryonic branch, breaks the U(1)R symmetry already in the UV. The 2-form potential for

the RR form F3 has an explicit ψ dependence. In the UV limit

C2 ≃Mψω2,

where M is the flux of F3 through the S3 of T 1,1, and ω2 is the ψ independent 2-form on

T 1,1. Given that ψ itself is a double cover of the circle, C2 breaks U(1)R down to Z2M in

the UV. In the IR the metric has an explicit ψ dependence that breaks Z2M further to Z2

in the full agreement with the gauge theory.

As a result, the corresponding fluctuation of the background acquires mass that is not

vanishing even in the UV region [11, 14]. The fluctuation in question modifies the metric

along the ψ direction gµψ and can be described by the perturbation of the 1-form dψ by

the “gauge” field Ã = Ãµ dxµ + Ãt dt,

dψ → dψ + Ã. (2.3)

Since the dependence on the angles of the conifold is not important, we can restrict

our attention to the five-dimensional theory. In the conformal case, in the absence of the

3-form fluxes, the five-dimensional vector field Ã satisfies the equation for the massless

vector

d ∗5 dÃ = 0. (2.4)

The longitudinal part of Ã is not fixed by the equation (2.4) as it is a gauge degree of

freedom. The corresponding symmetry is anomaly free. After adding the fluxes, the

equation for Ã can be brought to the form

d(f ∗5 d(gÃ)) + ∗5Ã = 0, (2.5)

with some background-dependent functions f and g. The longitudinal part of Ã is no

longer trivial and satisfies

d ∗5 Ã = 0 . (2.6)

For an observer in four dimensions, the five-dimensional no-source equation (2.6) is precisely

the equation with an anomalous source

∂µÃµ = θ(Λ) , (2.7)

where µ denotes the space-time indices. This holographic anomaly mechanism is discussed

in more detail in [11].

2One can think of T 1,1 as of the space S3
× S3/U(1) ≃ S3

× S2. The angle ψ is obtained by the

identification of the 3rd Euler angles of both S3.
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The backgrounds we are interested in have a global SU(2) × SU(2) symmetry. Since

we are interested in the uncharged sector, all fluctuations should be s-waves with respect

to the directions along the base of the conifold. This is obvious for the four-dimensional

metric fluctuations as we keep it angle-independent. In the case of the vector, it is more

tricky. In fact we need to switch from the 1-form dψ to the invariant extension g5 → g5+Ã,

where

g5 = dψ + cos θ1dφ1 + cos θ2dφ2 . (2.8)

Apparently the shift of dψ results in the same shift of g5.

The anomalies of the scale, superconformal and U(1)R symmetries form a chiral su-

permultiplet [6]. Its bosonic part on the gravity side contains the fluctuations of the metric

trace h µ
µ and the longitudinal part of the vector field Ãµ = ∂µã.

In the section 4 we derive the equation (2.5) for the transverse part of the vector

fluctuation (2.3). The transverse component decouples from the longitudinal part and

from other supergravity fluctuations. Unfortunately it is much more complicated to derive

the equation for the longitudinal mode ã. Moreover there are certain indications that it

does not decouple from the other fields and needs to be considered as a part of a more

complicated system [15]. Coupling with different supergravity excitations will lead to some

non-trivial right hand side of the equation (2.7). It is particularly interesting to find the

supergravity expression for θ(Λ) and compare it with the gauge theory predictions. This

task is more ambitious and we leave it for a future work.

3. Graviton equations

In the current and the following sections we will be interested in the equations for the

bosonic components of the gravity multiplet, the graviton hµν and the vector mode Ãµ.

We start with a ten-dimensional analysis of the linearized supergravity equations for the

graviton excitations, valid for any solution on the baryonic branch, and proceed with a

derivation of the equations for the vector field in the KS background in the section 4.

The traceless symmetric perturbation of the metric is described by the five-dimensional

Klein-Gordon equation for a minimal scalar coupled to the background in the Einstein

frame. A straightforward check [16] shows that this property holds for the whole baryonic

branch.

Let us employ a background parameterization, introduced by Papadopoulos and Tseyt-

lin [8], and further adopted by Butti, Graña, Minasian, Petrini and Zaffaroni for the case

of baryonic branch [4]. Functions A(t), p(t), x(t) and Φ(t) below are scalar functions from

the BGMPZ system depending on the radial variable t. In particular, A(t) is equivalent

to the warp factor in the KS case, e−2A = h1/2. It should not be confused with the vector

fluctuation of the metric Ã = Ãi dx
i. In the Einstein frame the equation for the fluctuation

of the graviton δ
(

ds2
)

= e−2Ahµν dxµdxν takes the form

ḧµν + 2(ẋ− Φ̇ + 2Ȧ)ḣµν − k2e−2A−6p−xhµν = 0, (3.1)
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where k2 is the square of the 4-momentum and the over dots stand for t derivatives. The

equation (3.1) is precisely the Klein-Gordon equation for the minimal scalar in the baryonic

branch backgrounds including the KS point.

To proceed to the explicit form of the equation (3.1) for the KS background one chooses

e−2A = h1/2, e6p+2x =
3

2

(

coth t− t csch2t
)

, (3.2)

eΦ = eΦ0 = 1, e2x =
1

16
(sinh t cosh t− t)2/3 h,

where h(t) is the warp factor of the metric (2.2):

h(t) =

∞
∫

t

dx
(x coth x− 1)(sinh 2x− 2x)1/3

sinh2 x
. (3.3)

With these assignments the equation takes the familiar form [17]

ḧµν +
8

3

sinh2 t

sinh 2t− 2t
ḣµν − k2 h(t) sinh2 t

(sinh 2t− 2t)2/3
hµν = 0. (3.4)

In the last term we absorbed the numerical constants in the normalization of the momen-

tum. It is also convenient to write the equation in the conventional Shroedinger form, by

redefining the field hµν ,

(−∂2
t + V2(t))h̃µν = 0. (3.5)

The effective potential V2(k
2, t) is then given by

V2 =
k2 h(t) sinh2 t

(sinh 2t− 2t)2/3
− 8

9

sinh4 t

(sinh t cosh t− t)2
+

4

3

sinh t cosh t

(sinh t cosh t− t)
. (3.6)

4. Vector mode

To find a supergravity excitation that corresponds to the U(1)R current J µ5 , one should

consider a special deformation along the angular direction ∂/∂ψ of the T 1,1 ≃ S3 × S2, as

was discussed in the section 2. We perturb the SU(2) × SU(2) invariant 1-form g5 (2.8) in

the following way:

g5 → g5 + 2β̃(t)Ã, Ã ≡ Ãµdx
µ , (4.1)

where Ã is a 1-form describing the vector mode and β̃(t) is yet unknown function of t.

Such a deformation leads to the following perturbation of the metric:

ds2 → ds2 + 2 l(t) g5 · Ã, (4.2)

where we introduced l = 2β̃e−6p−x for a latter convenience. This change of the metric will

affect the Einstein equation as well as other equations of the type IIB supergravity. In

particular one needs to modify the RR 5-form F5 to preserve its self-duality:

δF5 = −βÃ ∧ dg5 ∧ dg5 + βdÃ ∧ g5 ∧ dg5 + βe3p+x/2 ∗5 dÃ ∧ dg5+

+ 2e−2x(β − β̃K)e−3p−x/2 ∗5 Ã ∧ g5. (4.3)
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Here β(t) is yet another function to be determined and K = 4Ȧ e2x in the notations of [4].

This turns out to be a minimal ansatz required for the KS solution. One can show that

there is no need to perturb the other type IIB fields if one is interested only in the four-

dimensional transverse part of Ã.

The ansatz so far contains the unknown functions β, and β̃ or l, which can be fixed by

the equations of motion. The Bianchi identity provides us with the following equations:

d(βe3p+x/2 ∗5 dÃ) + 2e−2x(β − β̃K)e−3p−x/2 ∗5 Ã = 0, (4.4)

and a simple equation for the function β,

β̇ = 0, or β = β0. (4.5)

To find the function β̃(t), or l(t), one should linearize the Einstein equation with the

perturbation of the metric as in (4.2). The only nontrivial equation comes from the δRµψ
term. After certain simplifications one can write it in the form

∂2
t Ãµ +

(

2(l̇/l) + 6ṗ+ 3ẋ+ 2Ȧ
)

∂tÃµ − k2e−2A−6p−xÃµ+ (4.6)

+
(

(l̈/l) + (l̇/l)(6ṗ + 3ẋ+ 2Ȧ) − 2Ȧ(6ṗ + ẋ) − 2e−12p−4x
)

Ãµ =
(

e−6p−x

24

(

H2
3 + F 2

3

)

− 2β0

l
e−6p−5xK +

1

2
e−4xK2

)

Ãµ.

In the KS background the square of the 3-forms is given by

F 2
3 = H2

3 = 3e6p−x
t2 + 2 t2 cosh2 t− 6t sinh t cosh t+ cosh2 t− 2 + cosh4 t

sinh4 t
. (4.7)

If one now writes the equation (4.4) in components, taking into account (4.5) and the

transversality condition ∂µÃµ = 0,

∂2
t Ãµ + (6ṗ + ẋ+ 2Ȧ)∂tÃµ − k2e−2A−6p−xÃµ +

(

8β̃Ȧ e−12p−2x/β0 − 2 e−12p−4x
)

Ãµ = 0,

(4.8)

and compares it with the equation (4.6), one will find that two equations coincide only for

β0 = 1, and l = e−x. (4.9)

Thus, the equation (4.8) with the solution (4.9) describes the transverse vector exci-

tation of the KS supergravity solution. For computation of the mass spectrum it is worth

writing (4.8) in terms of the explicit solution (3.2). We obtain the equation

∂2
t Ãµ + P(t) ∂tÃµ + Q(t) Ãµ = 0, (4.10)

with3

P(t) =
4

3

sinh2 t

(sinh t cosh t− t)
− 2 coth t− ḣ

h
, (4.11)

Q(t) = − k2h sinh2 t

(sinh 2t− 2t)2/3
− 8

9

sinh4 t

(sinh t cosh t− t)2
− 2

3

ḣ sinh2 t

(sinh t cosh t− t)h
. (4.12)

3Here we use the same momentum normalization as in the equation (3.4).
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Again, one could write the above equation in the form (3.5) with the new effective

potential V1(k
2, t),

V1 =
1

2
Ṗ +

1

4
P2 −Q =

k2h sinh2 t

(sinh 2t− 2t)2/3
− 1 + 2 coth2 t+

1

4

(sinh 2t− 2t)4/3

h sinh4 t
+

+
3

4

(sinh 2t− 2t)2/3(t coth t− 1)2

h2 sinh4 t
+

2

3

t coth t− 1

(sinh 2t− 2t)2/3h
−

−2(sinh 2t− 2t)1/3(t coth t− 1) coth t

h sinh2 t
. (4.13)

Closing this section we notice that the equation (4.10) presented here coincides with

the equation derived by Krasnitz in the UV limit of the KS theory. The t → ∞ limit

of (4.10) is the same as the equation (4.30) of [14] with the assignment

Wµ = − 27

hr4
Kµ,

and the change to the standard radial variable r = et/3.

5. Supersymmetry and 5d approach

In this section we compare our findings with the results obtained in the effective five-

dimensional models of gauge/gravity correspondence [10] and show that the equations for

the graviton and the vector mode are related by a Supersymmetric Quantum Mechanics

transformation. This allows us to extend the equation for the vector mode to the baryonic

branch.

The authors of [10] systematically study the R-symmetry invariant sector of fluctua-

tions above the N = 2 backgrounds of the five-dimensional N = 8 gauged supergravity.

Those also include the gravity multplet, i.e. the traceless four-dimensional metric fluctua-

tion and the vector fluctuation, dual to the U(1)R current.

Although the KS solution truncated to five dimensions would correspond to a more

general N = 2 supergravity theory [18], it is nevertheless interesting to compare the results

of the two approaches. In fact, in both cases, the unbroken supersymmetry is N = 2 as

we deal with the supergravity dual models of N = 1 gauge theories. Therefore the results

based on the on-shell supersymmetry can be applicable in both cases. Indeed, we find that

SQM transformations that relate the equations for the graviton and the vector mode in

the case of the KS background coincide with the supergravity transformations used in [10].

In five-dimensional theories one can use the gauge freedom to recast the background

metric into the kink form

ds25 = dq2 + e2T (q)ηµνdx
µdxν . (5.1)

According to a general observation of [12], the traceless graviton fluctuation hµν in five

dimensions satisfies the equation for a scalar minimally coupled to the geometry (5.1),

(

∂2
q + 4T ′ ∂q − e−2T k2

)

hµν = 0. (5.2)
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Using the transformations of the effective N = 2 supergravity of [10] one can transform

the graviton hµν into its superpartner — vector field B̂µ. As a result, the minimal scalar

equation transforms into

(

∂q e
2T ∂q − k2 + 2e2T

∂2T

∂q2

)

B̂µ = 0. (5.3)

Here again k is a 4-momentum. We are going to show that Ãµ of (4.10) and B̂µ are related

by a simple field redefinition.

The approach of [10] uses the superpotential, what can be problematic for the back-

grounds from the baryonic branch (except for the KS solution) since the corresponding

superpotentials are not known. Therefore there is a concern that the equations obtained

for the KS may not be applicable for the outer branch. Nevertheless, we notice that the

equation itself is W -independent. This already suggests that it is actually valid for any

background of the form (5.1). Below we will give an argument based on supersymmetry

that the equation (5.3) can be applied to the whole baryonic branch.

Let us first show that the equation (5.3) is the same as the equation (4.10) after an

appropriate field redefinition. One can think of the metric (5.1) as an effective metric

obtained by truncation of the ten dimensional theory with the metric (2.2), which in the

BGMPZ notations [4] and in the Einstein frame has a form

ds210 =
(

e−6p−xdt2 + e2Aηµνdx
µdxν + g

(5)
αβdyαdyβ

)

e−Φ/2. (5.4)

The metric (5.1) is then

ds25 =
(

e−6p−xdt2 + e2Aηµνdx
µdxν

)

det1/3(g(5))e−4Φ/3

=
(

e−6p−xdt2 + e2Aηµνdx
µdxν

)

e−2p+xe−4Φ/3, (5.5)

what gives the following identification for the coordinate q and the function T (q):

d

dq
= e4p+2Φ/3 d

dt
, 2T = 2A− 2p+ x− 4

3
Φ. (5.6)

Hence the equations for the graviton in ten and five dimensions coincide, because they are

just minimal scalar equations.

The equation (5.3) in the BGMPZ notations takes the form

∂2
t B̂µ +

(

2ṗ+ ẋ+ 2Ȧ− 2

3
Φ̇

)

∂tB̂µ − k2e−2A−6p−xB̂µ+

+

((

4ṗ+
2

3
Φ̇

)(

2Ȧ− 2ṗ+ ẋ− 4

3
Φ̇

)

+ 2Ä− 2p̈ + ẍ− 4

3
Φ̈

)

B̂µ = 0. (5.7)

To compare this to (4.10), derived in KS, set Φ = 0. To match the kinetic terms in two

equations one should redefine the field B̂µ = e2pÃµ. After redefinition one gets

∂2
t Ãµ + (6ṗ+ ẋ+ 2Ȧ) ∂tÃµ − k2e−2A−6p−xÃµ +

(

2ṗ (6Ȧ + 3ẋ) + 2Ä+ ẍ
)

Ãµ = 0, (5.8)
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which is precisely the equation (4.10) for the KS solution (3.2).

We can further reduce the five-dimensional equations (5.2) and (5.3) to one dimen-

sion by taking the square of momentum k2 to be the eigenvalue −m2. This will reduce

the supersymmetry algebra to the Supersymmetric Quantum Mechanics with two differ-

ential operators Q1 and Q2 that relate the solutions of the two equations (5.2) and (5.3).

These operators realize the effective transformations of the supersymmetry algebra that

was studied in [10]. Indeed, there are operators Q1 and Q2, such that the equations

Q1Q2hµν = −m2hµν and Q2Q1B̂µ = −m2B̂µ (5.9)

coincide with the equation for the graviton (3.4) and the equation for the vector mode (4.10)

in the form (5.7). It is easy to show that the operators that satisfy (5.9) are

Q1 = (∂q + 2T ′) = e4p+2Φ/3

(

∂t + 2Ȧ− 2ṗ+ ẋ− 4

3
Φ̇

)

(5.10)

and

Q2 = e2T∂q = e2A+2p+x−2Φ/3∂t. (5.11)

The operator Q2 is precisely the operator from (73) of [10] that realizes an N = 2 super-

gravity transformation relating hµν and B̂µ.

To get a more conventional representation of the SQM here, one can change the coordi-

nates to ∂q = e−T ∂u and bring the equations (5.2) and (5.3) to the form (3.5) by redefining

the wave functions hµν and B̂µ. Let us define an operator

Q =

(

0 ∂u −W

∂u +W 0

)

(5.12)

with W = −3T ′/2, that acts on the vector made of redefined wave functions ψh and ψB .

According to the equations (5.2) and (5.3) the action of Q2 is as follows

Q2

(

ψh
ψB

)

= −m2

(

ψh
ψB

)

. (5.13)

Therefore Q2 is analogous to the Hamiltonian of the SQM. Notice, however, that its eigen-

values are m2, not m, because Q1 and Q2 correspond to the squares of the original super-

symmetry transformations, i.e. Q1, Q2 are bosonic operators.

We see now that the equation (5.2) and (5.3) are related by supersymmetry transfor-

mation for any background (5.1). Since the minimal scalar equation describing the graviton

is valid for the whole branch, the superpartner of the graviton (the transverse vector mode)

satisfies the “superpartner” equation (5.3) for any background from the baryonic branch.4

4In general, there is a family of equations like (5.3) that are related to (5.2) by a supersymmetry

transformation. Indeed, for a given W from (5.12), any Ŵ that satisfies Ŵ 2 + Ŵ ′ = W 2 +W ′ gives rise

to such an equation through (5.13). Nevertheless, the equation (5.3) is uniquely specified by a requirement

that the effective potential V1 is singular at t = 0. This is true because V1 is singular in the KS case (4.13)

and hence should be singular everywhere on the branch by continuity.
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n 1 2 3 4 5 6 7 8 9

Graviton 1.764 4.002 7.143 11.19 16.16 22.03 28.83 36.54 45.16

Vector Mode 1.762 3.999 7.136 11.18 16.12 22.01 28.80 36.50 45.12

Table 1: The spectrum of m2 for the gravity multiplet

We have calculated the spectrum of both equations numerically for the backgrounds

along the baryonic branch. Since the equations for the superpartners are significantly

different the discrepancy between the masses can be used as an error estimate of the

numerical method used in the calculation.

6. Numerical analysis

In this section we present the results of the numerical studies of bound state spectra for the

baryonic branch backgrounds. In our computations we will rely on the shooting technique.

The spectrum of the minimal scalar equation (3.4) in the KS background was also studied

numerically in [16, 17, 19] while the analytical approximation was employed in [13].

We start by comparing the KS spectra of the equations for graviton (3.4) and vector

mode (4.10). Two fluctuations are related by supersymmetry and thus their masses should

be the same. The spectrum is presented in the table 1. The eigenvalues match with those

obtained by Krasnitz [17] with the WKB approximation. Comparing the numeric values

of the masses of the spin-2 and vector particles in the table 1 one could estimate the error

of the shooting technique in the KS case to be around 0.1%.

First few (up to ten) values of m2 in the KS spectrum can be approximated with a

good accuracy by a quadratic fit

m2
n = 0.46n2 + 0.86n + 0.46, n = 1, 2, 3, . . . (6.1)

We present the results of the fit and the masses on the figure 1(a). It is interesting that the

fit (6.1) is close to the spectrum even for small n. The fitting formula (6.1) is proportional

to (n + n0)
2, where n0 is close to one. This is consistent with the approximation of [13],

where the eigenvalues were matched to zeroes of the Bessel functions, ubiquitous in the

conical geometry. A similar result was obtained in [20] for the GPPZ [21] flow, where the

exact spectrum was proportional to (n+ 1)2.

The fit (6.1) was found by minimizing the sum

N
∑

n=1

∣

∣m2
n − (c2n

2 + c1n+ c0)
∣

∣

2
(6.2)

for the few first states N = 5, . . . , 10. With more points taken into account the least square

fit would increase the accuracy of the highest coefficient c2 by the price of a larger deviation

from m2
n for small n. We found c2 to be ∼ 0.459 in the KS case. This number is in good

agreement with the universal coefficient obtained by Berg, Haack and Mück in [19]. In

their normalization the coefficient takes value (3/4)2/3h(0) c2 ≃ 0.27.
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Figure 1: (a) Values of m2 for the graviton multiplet in KS for different quantum numbers n.

(b) Extension of the spectrum to the baryonic branch parameterized by U .

Remarkably, the coefficient c2 does not depend on the details of the effective potential,

but rather encodes information about the background geometry, namely, the combina-

tion g00gtt, which arises from the Laplace operator in five dimensions. Indeed, the WKB

approach, applied in [17], gives

∫ t∗

0
dt
√

−V2(t)
∣

∣

∣

k2=−m2
n

=
3

4
π + (n− 1)π, (6.3)

where V2(t
∗) = 0. In the KS case V2 is given by (3.6). For large n, and consequently large

mn, the k2-independent term in V2 can be dropped and we obtain an analytical expression

for c2 in the KS case

c2 = π2

[

∫

∞

0
dt

√
h sinh t

(sinh 2t− 2t)1/3

]−2

∼ 0.460 . (6.4)

Let us choose the coordinate U , introduced in [5], to parameterize the baryonic branch.

To estimate the scale of the spectrum for a non-KS background we rewrite the poten-

tial (3.6) in terms of the notations of [4], substituting k2 for its eigenvalue −m2:

V2(m
2, t) = −m

2e−2A+x

v
+

2a cosh t

v
e−3g − (a cosh t+ 1)2 + 2a2 sinh2 t

v2
e−2g, (6.5)

where a(t) is another function from the background ansatz [8, 4], e2g = −1−a2−2a cosh t,

and v = e6p+2x.

Although we cannot find the spectrum of m2 analytically, we can estimate how it scales

with the parameter U when we are significantly far from the origin of the branch. We start
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Figure 2: (a) c2-coefficient as the function of U -parameter. (b) log c2 as the function of logU .

our analysis with the m2-independent part of V2, which only slightly varies as we increase

U . Indeed, its leading UV (t → ∞) asymptotic is U -independent:

V2(0, t) =
4

9
− (5 − 2t)

6
U2e−4t/3 + . . . ; (6.6)

and V2(0, t) varies within a small range in the IR (t = 0):

V2(0, t) =
1

4
− 3

5
ξ(1 − ξ) + O(t2). (6.7)

Here we remind that ξ(U) ∈ (1/6 . . . 5/6) [4] is a function of U , which can also be used

to parameterize the branch. It varies within the specified limits, and the point ξ = 1/2

corresponds to the KS solution. Hence V2(0, 0) = 2/5 for KS and V2(0, 0) approaches

1/3 for large U . The V2(0, t) is monotonic and therefore it can be dropped similarly to

k2-independent term from (3.6) in the KS case above.

Unlike V2(0, t), the mass-dependent component m2 e−2A+xv−1 significantly depends on

U . It monotonically changes from a finite value at zero to the zero value at infinity5

e−2A+xv−1 =
21/33

16
(4t− 1)e−2t/3 + . . . (6.8)

In general, the value at zero is a complicated function of U , ξ(U) and Φ0 = Φ(U, t = 0).

It can be simplified in the large U range by substituting the limiting value ξ = 5/6 and

expressing Φ0 in terms of U and ξ [5]: eΦ0 ≃ 23/23−1/4U−3/4. This gives

e−2A+xv−1 =
21/33

2U

[

1 − e2Φ0

(

1 +
2t2

9
+

2t4

135
+ . . .

)]

. (6.9)

5Here we use the normalization of the warped factor introduced by Krasntitz [17], what results in

e−2A = 21/33
p

(e−2Φ
− 1)U−1.
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SUSY D5 Baryonic Condensate Fundamental String Glueballs D3, D̄3

α 0 α < 1 1/4 1/2 5/4

Table 2: Large U behavior: T ∼ Uα.

The normalized solution to the equation (3.5) exists only if V2 < 0 at the origin. We

can be more precise and use semiclassical approximation to express the n-th mass through

the integral over the V2 < 0 region, as we did above in (6.3). For large U m2-dependent

term can be dropped and c2 is given by

c2 = π2

[
∫

∞

0
dt e−A+x/2v−1/2

]−2

, (6.10)

analogously to (6.4). In general this integral cannot be evaluated. Although it is clear

from (6.9) that m scales at least as U for large U . Indeed, the integral
∫

∞

0 dt
√

−V (t) can

be roughly approximated as
√

−V2(0)t
∗ ∼ mt∗U−1/2, where V (t∗) = 0. The main compli-

cation is to estimate t∗. Since e2Φ0 from (6.9) is small, the perturbative expansion (6.9)

suggests that t∗ increases with U until a point, where (6.9) is no longer reliable. At the same

time the large t asymptotic (6.8) is U -independent, which suggests that for large U the

value of t∗ approaches a constant. Therefore we expect m2
n ∼ Un2 for sufficiently large U .

Numerical studies of the graviton multiplet spectrum on the baryonic branch shows

the pattern depicted in the figure 1(b). Calculations confirm that the leading coefficient c2
grows as U2α, where α approaches 1/2 for large U (figure 2). As a final touch, we collect in

the table 2 the known evidence about the U scaling parameter α for some non-perturbative

objects on the baryonic branch.

7. Discussion

In this work we present the equations describing the bosonic degrees of freedom of the

gravity multiplet for the KS and the baryonic branch backgrounds. The equations were

derived by a linearization of the ten-dimensional type IIB supergravity equations. The

traceless graviton from the gravity multiplet satisfies the equation for a scalar minimally

coupled to the background (3.1). The vector mode of the gravity multiplet dual to the

U(1)R current satisfies the equation (4.10) in the KS background. Its generalization to

the baryonic branch (5.7) is found by matching it to the equation (5.3) derived in the

five-dimensional approach in [10]. This result is supported by the supersymmetry trans-

formation that relates the wave functions of these fluctuations.

The mass spectrum of the gravity multiplet for the KS background can be found in the

table 1. This spectrum can be approximated with a good accuracy by a simple quadratic

formula (6.1), which is approximately

m2
n ≃ 0.46(n + 1)2. (7.1)

This simple complete square form does not hold along the baryonic branch, although the

spectrum can be well approximated by a general quadratic formula c2n
2 + c1n+ c0.
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In this work we did not study the spectrum of the anomaly mutliplet S of (1.1),

which contains the fluctuation of the trace of the metric h µ
µ and the longitudinal part of

the vector fluctuation ã (2.3). The main complication is that these fluctuations do not

decouple from the other supergravity fields. Recently the fluctuation of the metric h µ
µ was

considered as a part of 7-particle system by Berg, Haack and Mück in [15, 19]. They found

the resulting spectrum of the system, but the individual mass towers were not identified

with the glueballs.

Based on the similarities between the spectrum of the gravity multiplet in the KS (7.1)

and GPPZ backgrounds, where m2
n = 4L−2(n+ 1)2, one can assume that some features of

the spectra for certain glueballs do not crucially depend on the details of the background.

Based on the exact result of the GPPZ case calculation for the mass spectrum of the

anomaly multiplet S, m2
n = 4L−2(n+ 1)(n+ 2) [10, 20, 22] , one can guess the answer for

the KS case. In the units of BHM the approximate formula reads

m2
n ≃ 0.27(n + 1)(n + 2), n = 1, 2, 3, . . .

This is in fact close to the lightest of the seven towers of BHM, given by the empirical

formula

0.271n2 + 0.774n + 0.562.

It would be interesting to confirm the matching between the trace of the metric and the

lowest tower of the 7-particle system with a more rigorous approach.

We find it intriguing that the spectrum of [19] contains only two states that look

degenerate. Given that we are dealing with massive states of the N = 1 system we would

expect all the states to be degenerate. This might signify that the numerical method used

in [19] alter the mass degeneracy because of a numerical error. Another possibility is that

the superpartners of the glueballs in question are not the part of the 7-particle system

and cannot be captured by the fluctuations of the PT ansatz. The clarification of the

magnitude of the numerical error is also important to check another finding of [19] — the

significant deviation of the spectrum from the quadratic behavior for few lowest values of

the quantum number n.
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